How (Not) to Instantiate Ring-LWE

نویسنده

  • Chris Peikert
چکیده

The learning with errors over rings (Ring-LWE) problem—or more accurately, family of problems— has emerged as a promising foundation for cryptography due to its practical efficiency, conjectured quantum resistance, and provable worst-case hardness: breaking certain instantiations of Ring-LWE is at least as hard as quantumly approximating the Shortest Vector Problem on any ideal lattice in the ring. Despite this hardness guarantee, several recent works have shown that certain instantiations of RingLWE can be broken by relatively simple attacks. While the affected instantiations are not supported by worst-case hardness theorems (and were not ever proposed for cryptographic purposes), this state of affairs raises natural questions about what other instantiations might be vulnerable, and in particular whether certain classes of rings are inherently unsafe for Ring-LWE. This work comprehensively reviews the known attacks on Ring-LWE and vulnerable instantiations. We give a new, unified exposition which reveals an elementary geometric reason why the attacks work, and provide rigorous analysis to explain certain phenomena that were previously only exhibited by experiments. In all cases, the insecurity of an instantiation is due to the fact that the error distribution is insufficiently “well spread” relative to the ring. In particular, the insecure instantiations use the so-called non-dual form of Ring-LWE, together with spherical error distributions that are much narrower and of a very different shape than the ones supported by hardness proofs. On the positive side, we show that any Ring-LWE instantiation which satisfies (or only almost satisfies) the hypotheses of the “worst-case hardness of search” theorem is provably immune to broad generalizations of the above-described attacks: the running time divided by advantage is at least exponential in the degree of the ring. This holds for the ring of integers in any number field, so the rings themselves are not the source of insecurity in the vulnerable instantiations. Moreover, the hypotheses of the worst-case hardness theorem are nearly minimal ones which provide these immunity guarantees. ∗Computer Science and Engineering, University of Michigan. Email: [email protected]. This material is based upon work supported by the National Science Foundation under CAREER Award CCF-1054495 and CNS-1606362, the Alfred P. Sloan Foundation, and by a Google Research Award. The views expressed are those of the authors and do not necessarily reflect the official policy or position of the National Science Foundation, the Sloan Foundation, or Google.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A New Ring-Based SPHF and PAKE Protocol On Ideal Lattices

emph{ Smooth Projective Hash Functions } ( SPHFs ) as a specific pattern of zero knowledge proof system are fundamental tools to build many efficient cryptographic schemes and protocols. As an application of SPHFs, emph { Password - Based Authenticated Key Exchange } ( PAKE ) protocol is well-studied area in the last few years. In 2009, Katz and Vaikuntanathan described the first lattice-based ...

متن کامل

Provably Weak Instances of Ring-LWE

The ring and polynomial learning with errors problems (Ring-LWE and Poly-LWE) have been proposed as hard problems to form the basis for cryptosystems, and various security reductions to hard lattice problems have been presented. So far these problems have been stated for general (number) rings but have only been closely examined for cyclotomic number rings. In this paper, we state and examine t...

متن کامل

Additively Homomorphic Ring-LWE Masking

In this paper, we present a new masking scheme for ring-LWE decryption. Our scheme exploits the additively-homomorphic property of the existing ring-LWE encryption schemes and computes an additivemask as an encryption of a random message. Our solution differs in several aspects from the recent masked ring-LWE implementation by Reparaz et al. presented at CHES 2015; most notably we do not requir...

متن کامل

Worst-case to average-case reductions for module lattices

Most lattice-based cryptographic schemes are built upon the assumed hardness of the Short Integer Solution (SIS) and Learning With Errors (LWE) problems. Their efficiencies can be drastically improved by switching the hardness assumptions to the more compact Ring-SIS and RingLWE problems. However, this change of hardness assumptions comes along with a possible security weakening: SIS and LWE ar...

متن کامل

Integer Version of Ring-LWE and its Applications

In this work, we describe an integer version of ring-LWE over the polynomial rings and prove that its hardness is equivalent to one of the polynomial ring-LWE. Moreover, we also present a public key cryptosystem using this variant of the polynomial ring-LWE.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2016